A variance reduction technique for the stochastic Liouville–von Neumann equation
نویسندگان
چکیده
منابع مشابه
Stochastic Variance Reduction for Policy Gradient Estimation
Recent advances in policy gradient methods and deep learning have demonstrated their applicability for complex reinforcement learning problems. However, the variance of the performance gradient estimates obtained from the simulation is often excessive, leading to poor sample efficiency. In this paper, we apply the stochastic variance reduced gradient descent (SVRG) technique [1] to model-free p...
متن کاملOnline Variance Reduction for Stochastic Optimization
Modern stochastic optimization methods often rely on uniform sampling which is agnostic to the underlying characteristics of the data. This might degrade the convergence by yielding estimates that suffer from a high variance. A possible remedy is to employ non-uniform importance sampling techniques, which take the structure of the dataset into account. In this work, we investigate a recently pr...
متن کاملVariance Reduction for Stochastic Gradient Optimization
Stochastic gradient optimization is a class of widely used algorithms for training machine learning models. To optimize an objective, it uses the noisy gradient computed from the random data samples instead of the true gradient computed from the entire dataset. However, when the variance of the noisy gradient is large, the algorithm might spend much time bouncing around, leading to slower conve...
متن کاملStochastic Variance Reduction Methods for Policy Evaluation
Policy evaluation is a crucial step in many reinforcement-learning procedures, which estimates a value function that predicts states’ longterm value under a given policy. In this paper, we focus on policy evaluation with linear function approximation over a fixed dataset. We first transform the empirical policy evaluation problem into a (quadratic) convex-concave saddle point problem, and then ...
متن کاملVariance Reduction for Distributed Stochastic Gradient Descent
Variance reduction (VR) methods boost the performance of stochastic gradient descent (SGD) by enabling the use of larger, constant stepsizes and preserving linear convergence rates. However, current variance reduced SGD methods require either high memory usage or an exact gradient computation (using the entire dataset) at the end of each epoch. This limits the use of VR methods in practical dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The European Physical Journal Special Topics
سال: 2019
ISSN: 1951-6355,1951-6401
DOI: 10.1140/epjst/e2018-800094-y